

#### Manifold Sampling for Composite Nonconvex Nonsmooth Optimization

Kamil Khan, Jeffrey Larson, Matt Menickelly, Stefan Wild

Argonne National Laboratory

August 5, 2019



#### Problem setup

Nonsmooth, composite optimization

$$\underset{x}{\operatorname{minimize}} f(x) = h(F(x))$$

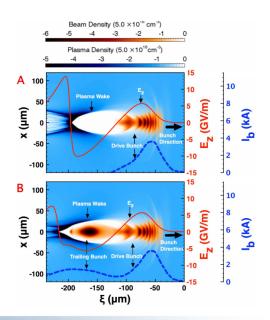
nonsmooth  $h \colon \mathbb{R}^p \to \mathbb{R}$  (with a known structure), smooth  $F \colon \mathbb{R}^n \to \mathbb{R}^p$  (expensive to evaluate).

- ▶ Idea: Build p models, one for each component of F. Use model gradients in place of  $\nabla F$ .
- Requires a manifold representation of h.
- Example: censored loss:

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{c_i, F_i(x)\}|$$



#### Computers/Simulations!

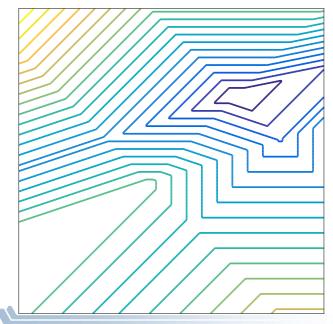




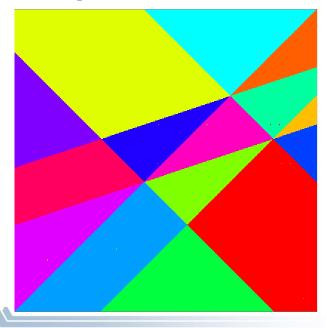
# Computers/Simulations!



## Censored $\ell_1$ loss



# Censored $\ell_1$ loss



$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 $\rho$  manifolds



$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, \dots, p\}} |y_i|$$

2p manifolds



$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$  manifolds



$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$  manifolds

$$h(y) = ||y||_1 = \sum_{i=1}^p |y_i|$$

2<sup>p</sup> manifolds



$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 $p \,\, \mathsf{manifolds}$ 

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$  manifolds

$$h(y) = \|y\|_1 = \sum_{i=1}^p |y_i|$$

2<sup>p</sup> manifolds

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$
approximately  $3 \times 10^{21}$  noten

 $3^p$  manifolds. If p = 45,

approximately  $3\times 10^{21}\ \text{potential}$  manifolds.





$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1,...,p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$  manifolds

$$h(y) = ||y||_1 = \sum_{i=1}^{p} |y_i|$$

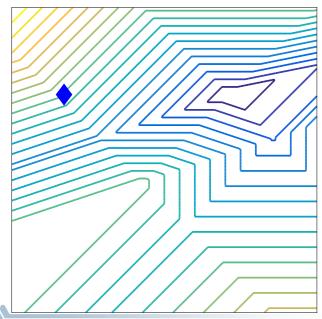
2<sup>p</sup> manifolds

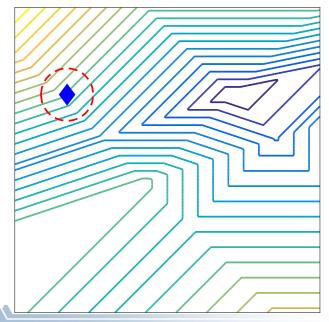
▶ 
$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$
 3<sup>p</sup> manifolds. If  $p = 45$ , approximately  $3 \times 10^{21}$  potential manifolds.

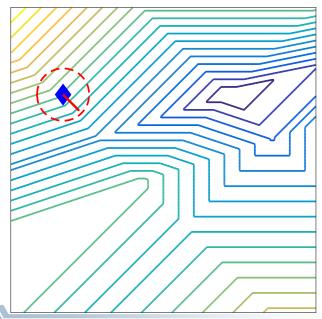
#### User scripts need to calculate:

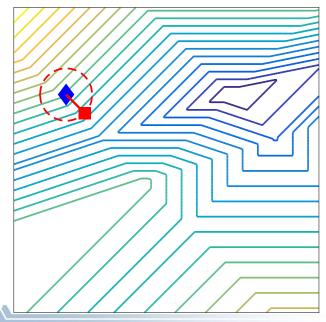
$$f(x), F(x), \mathbb{H}(F(x)), \{\nabla h_i(F(x)) : i \in \mathbb{H}(F(x))\}, \{h_i(F(x)) : i \in \mathbb{G}\},$$

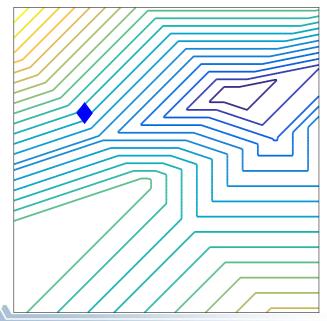


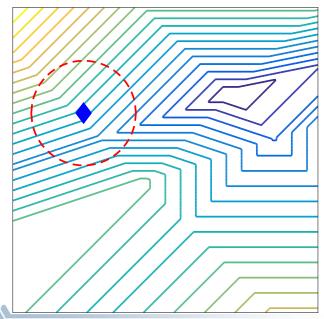


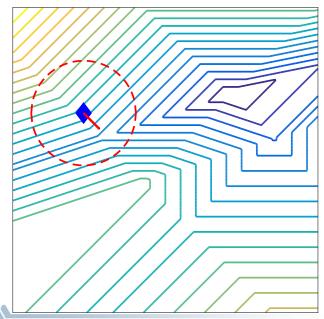


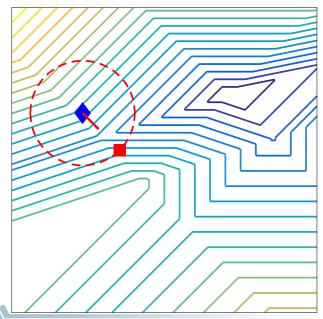


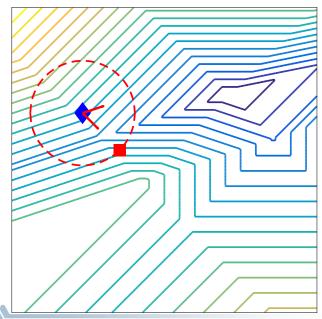


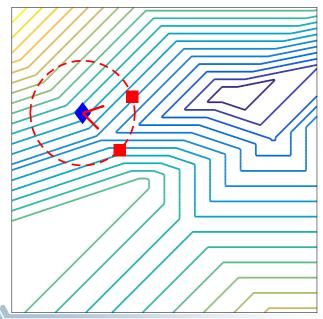


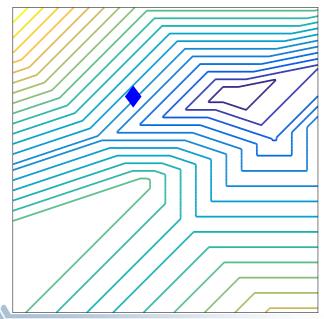


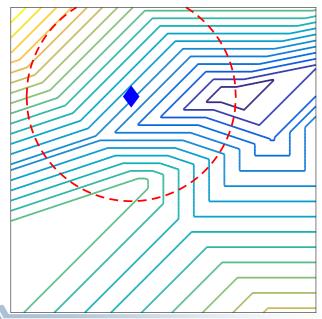


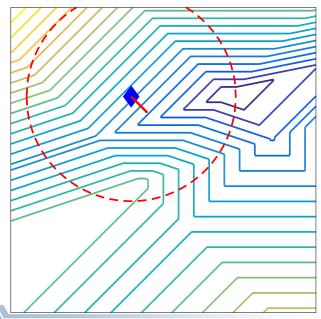


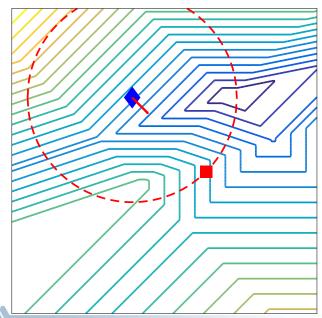


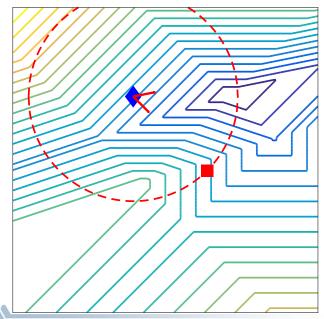


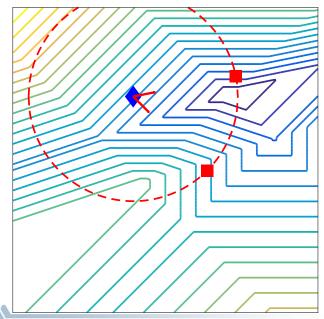


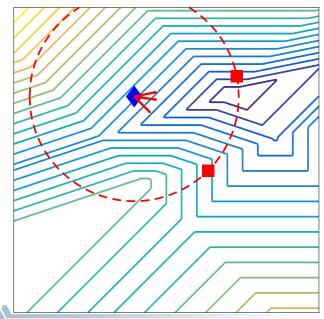


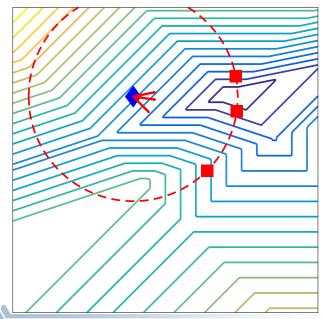












$$g^{k} riangleq extbf{proj}\left(0, extbf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extbf{co}\left(\mathbb{G}^{k}
ight)$$
 ,



$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

#### where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$



$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

or

$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$



$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

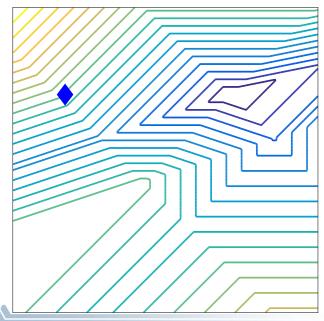
or

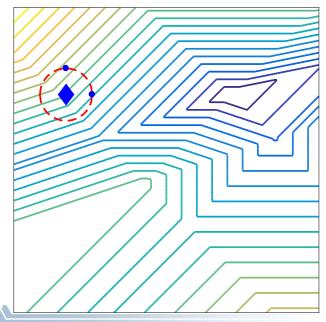
$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

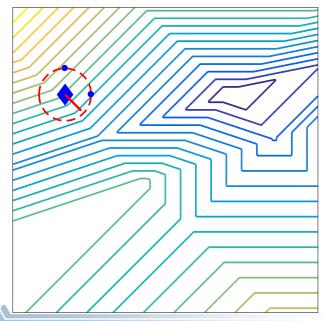
Define the smooth master model  $m_k^f : \mathbb{R}^n \to \mathbb{R}$  (with gradient  $g^k$ ) and obtain step by (approximately) solving

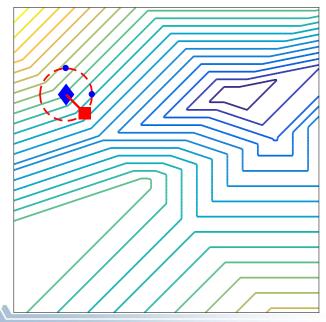


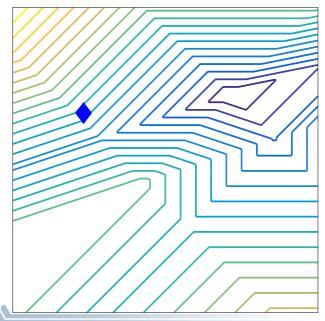


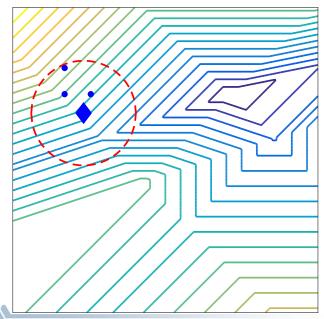


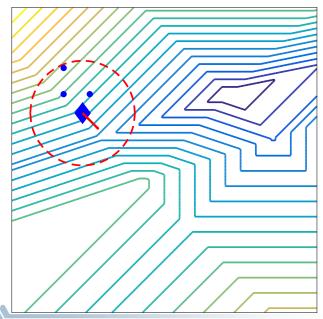


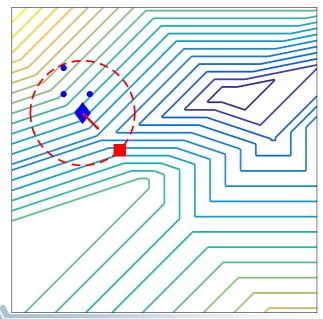


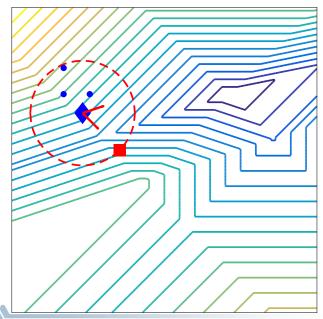


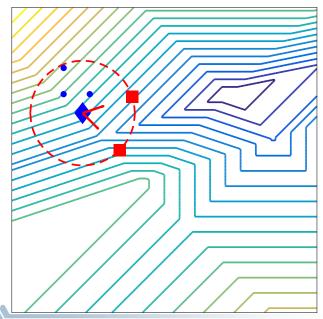


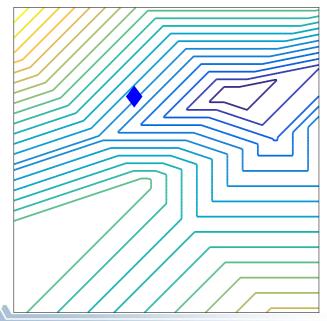


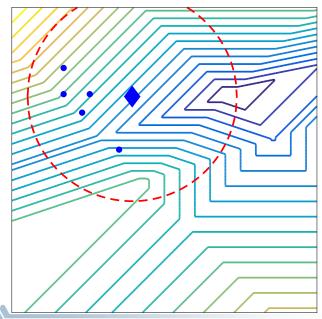


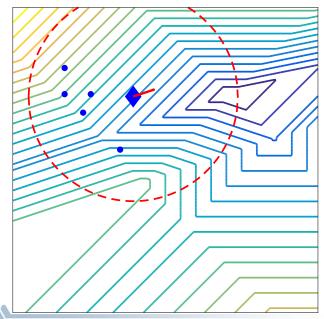


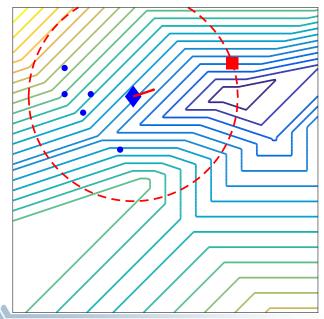


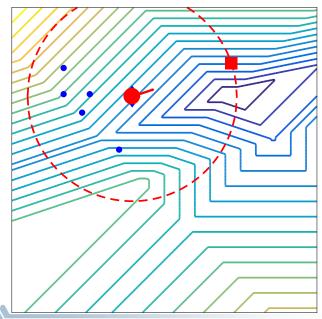


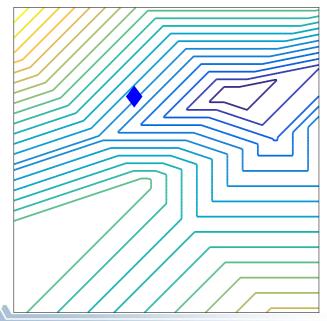


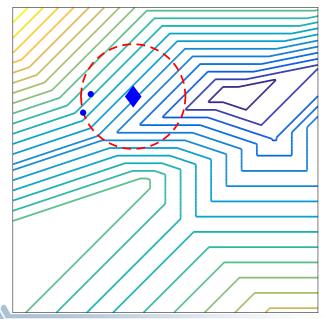


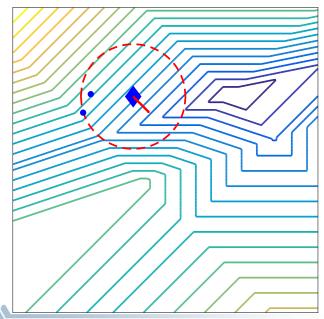


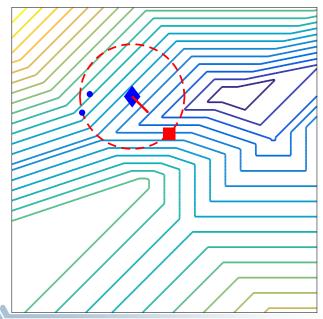


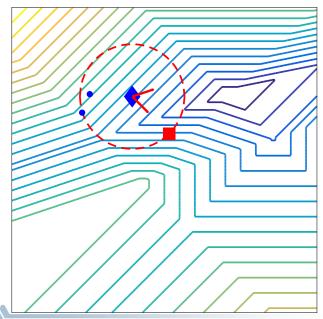


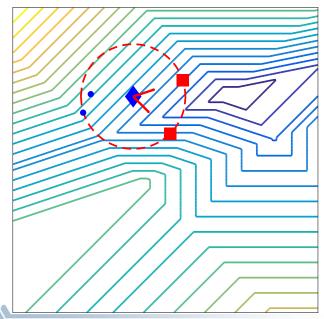


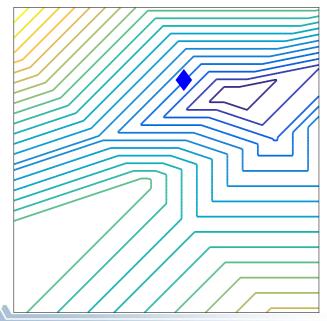


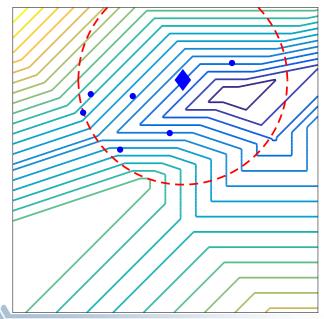


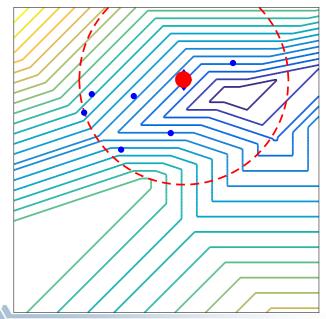












#### Better trust-region subproblem?

Instead of solving

minimize 
$$m_k^f(x^k + s)$$
  
subject to:  $s \in \mathcal{B}(0, \Delta_k)$ 

How about

$$\underset{s}{\text{minimize }} h(M(x^k + s))$$

subject to: 
$$s \in \mathcal{B}(0, \Delta_k)$$



#### Better trust-region subproblem?

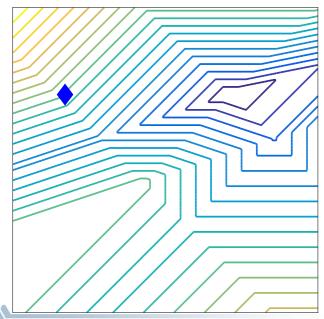
Instead of solving

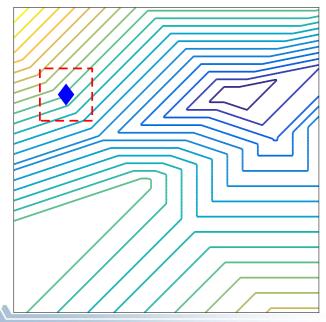
minimize 
$$m_k^f(x^k + s)$$
  
subject to:  $s \in \mathcal{B}(0, \Delta_k)$ 

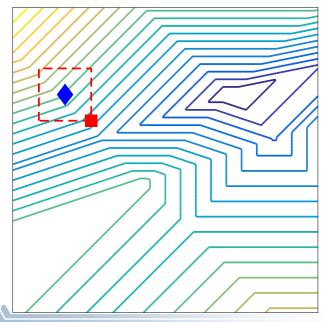
How about

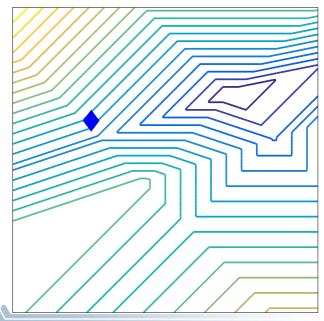
For censored  $\ell_1$  loss:

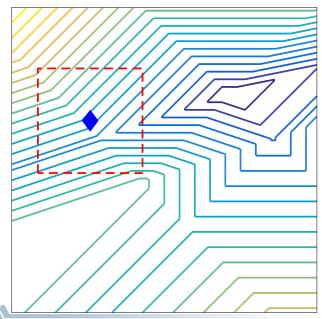


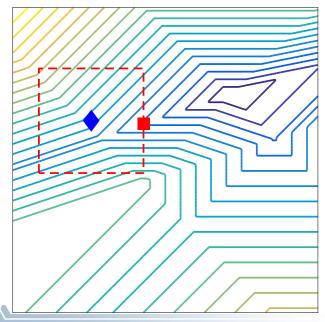


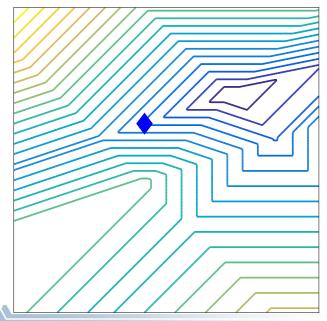


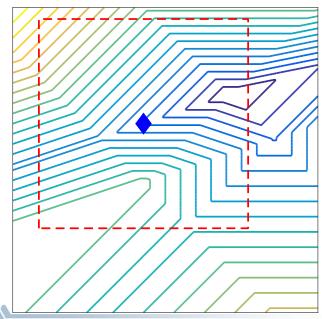


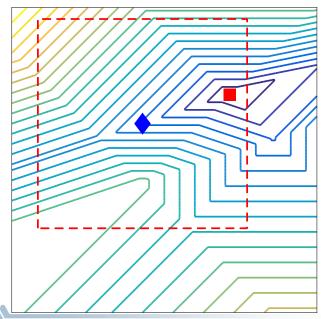


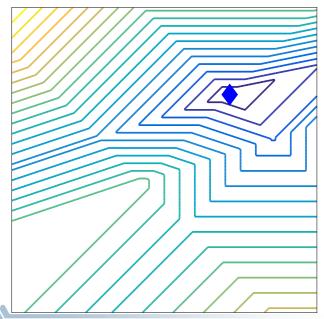


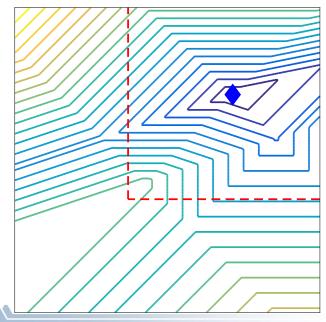


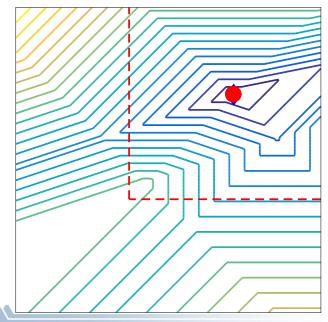




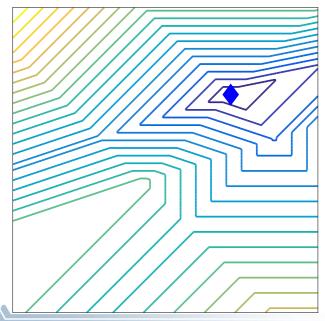




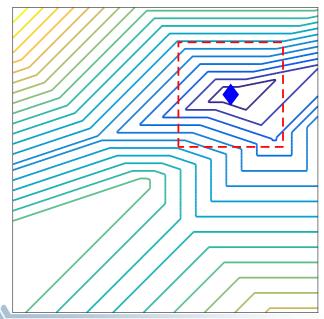




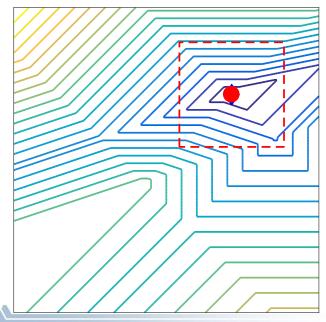
## **Manifold Sampling**



## **Manifold Sampling**



## **Manifold Sampling**



#### Better trust-region subproblem?

#### Instead of solving

minimize 
$$m_k^f(x^k + s)$$
  
subject to:  $s \in \mathcal{B}(0, \Delta_k)$ 

How about

minimize 
$$h(M(x^k + s))$$
  
subject to:  $s \in \mathcal{B}(0, \Delta_k)$ 

For censored  $\ell_1$  loss:

minimize 
$$\sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$
  
subject to:  $s \in \mathcal{B}(0, \Delta_k)$ 



#### Better trust-region subproblem?

Instead of solving

$$\underset{s}{\mathsf{minimize}} \ m_k^f(x^k + s)$$

subject to: 
$$s \in \mathcal{B}(0, \Delta_k)$$

How about

$$\underset{s}{\text{minimize }} h(M(x^k + s))$$

subject to: 
$$s \in \mathcal{B}(0, \Delta_k)$$

For censored  $\ell_1$  loss:

$$\underset{s}{\text{minimize}} \sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$

subject to: 
$$s \in \mathcal{B}(0, \Delta_k)$$

#### Question

Best method for solving composite nonsmooth quadratic problems?



▶ Descent is measured using a linearization  $h^{(k)}$  of some selection function  $\bar{h}$  and not h



▶ Descent is measured using a linearization  $h^{(k)}$  of some selection function  $\bar{h}$  and not h

▶ Must ensure information about  $\bar{h}$  is in  $\mathbb{G}^k$  before taking a step



- ▶ Descent is measured using a linearization  $h^{(k)}$  of some selection function  $\bar{h}$  and not h
- Must ensure information about  $\bar{h}$  is in  $\mathbb{G}^k$  before taking a step
- ▶ h<sup>(k)</sup> must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and  $h^{(k)}(F(x^k+s^k)) \ge h(F(x^k+s^k))$ ,



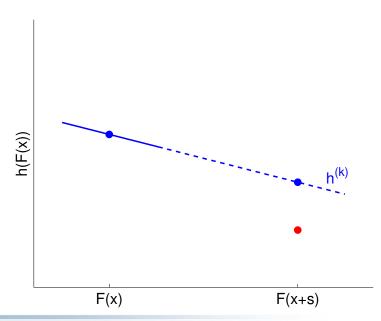
▶ Descent is measured using a linearization  $h^{(k)}$  of some selection function  $\bar{h}$  and not h

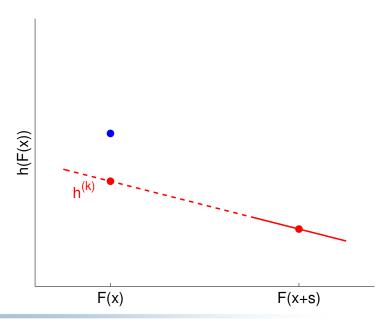
- Must ensure information about  $\bar{h}$  is in  $\mathbb{G}^k$  before taking a step
- ▶ h<sup>(k)</sup> must satisfy

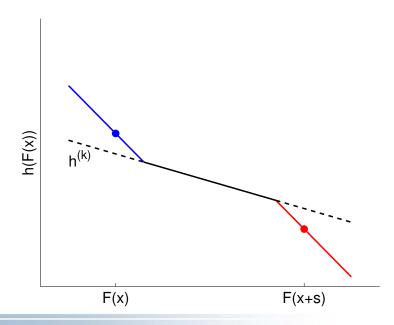
$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and  $h^{(k)}(F(x^k+s^k)) \ge h(F(x^k+s^k))$ ,

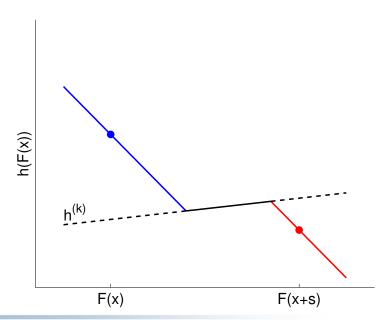
$$\rho_{k} \triangleq \frac{h^{(k)}(F(x^{k})) - h^{(k)}(F(x^{k} + s^{k}))}{m(x^{k}) - m(x^{k} + s^{k})}$$











#### Convergence

- ▶ If the trust region radius  $\Delta_k$  is a sufficiently small multiple of the model gradient  $||g^k||$ , the iteration is guaranteed to be successful.
- $\triangleright$   $\lim_{k\to\infty} \Delta_k = 0$ .

- ▶ Some subsequence of master model gradients  $g^k$  goes zero.
- Zero is in the generalized Clarke subdifferential of cluster points of any subsequence of iterates with master model gradients converging to zero.
- ▶ The same holds for cluster points of the entire sequence of iterates.

#### **Conclusions**

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- F is "hard"

it can be advantageous to model  $F_i$  and then combine those models via known information about h.



#### **Conclusions**

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- F is "hard"

it can be advantageous to model  $F_i$  and then combine those models via known information about h.

jmlarson@anl.gov

Thank you!

